
1.  Introduction
New-generation geostationary satellites, such as Geostationary Operational Environmental Satellites-16/17 
(GOES-16/17), Himawari-8/9, Geostationary Korea Multipurpose Satellite-2A (GEO-KOMPSAT-2A/2B), 
EUMETSAT-Meteosat Third Generation, and Fengyun-4, and so on, can provide high-spatiotemporal-res-
olution atmospheric motion vector (AMV) products containing mesoscale or convective flow information. 
Recent studies showed that assimilating high-resolution AMVs has generally slightly positive or neutral im-
pacts on the global and regional model analyses and forecasts, especially with small reductions in wind er-
rors (Cherubini et al., 2006; Elsberry et al., 2018; James & Benjamin, 2017; Kim & Kim, 2018; Kim et al., 2017; 
Le Marshall et al., 2008; Lean et al., 2016; Lean & Bormann, 2019; Li et al., 2020; Lim et al., 2019; Mallick 
& Jones, 2020; Otsuka et al., 2015; Sawada et al., 2019; Velden et al., 2017; Wu et al., 2015; Yamashita, 2012, 
2017). Most of these studies focused on improving the hurricane, or tropical cyclone track and intensity 
forecasts by assimilating high-density or rapid-scan AMVs into a variational data assimilation (DA) or en-
semble-based Kalman filter framework. However, the impact of high-spatiotemporal-resolution AMVs on 
mesoscale and convective scale weather forecasts over land has not been extensively explored (e.g., Mallick 
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& Jones,  2020). The main purpose of this two-part study is to investigate the impact of high-resolution 
AMVs on convective scale DA and numerical weather prediction (NWP).

In Part I of this two-part study, the impact of assimilating high-resolution AMVs on convective scale NWP 
is evaluated using simulated data of an idealized supercell storm. The results of the baseline DA experiment 
demonstrate that the errors in wind and other model variables are reduced by assimilating the simulated 
AMVs, leading to the enhancement of the storm-top divergence and low-level convergence, and the low-lev-
el cold pool associated with the simulated supercell storm. Three sets of sensitivity experiments are also per-
formed to test the impact of observation resolution, DA cycling frequency, and horizontal correlation length 
scale, respectively. Overall, assimilating higher-spatial-resolution AMVs at higher cycling frequency results 
in better initial conditions and storm forecasts, except that the experiment with the most frequent DA cy-
cling (5-min interval) tends to overestimate temperature, nonprecipitating hydrometeor, and storm-relative 
helicity fields, and produce spurious cells in the short-term forecasts. It is also found that the correlation 
length scale length of 20 km produces the best forecasts. These conclusions will serve as a reference guide 
for the assimilation of real-time AMV data.

The Advanced Baseline Imager (ABI) aboard the GOES-16/17 (Schmit et al., 2005, 2017) brings an oppor-
tunity for retrieving high spatiotemporal-resolution AMVs over the Continental United States (CONUS), 
which can better monitor the mesoscale or convective scale atmospheric flow. However, the benefit of these 
data for convective scale NWP has not yet been extensively explored (Daniels et al., 2012). Therefore in 
Part II of this two-part research, the value of assimilating GOES-16 ABI derived AMVs data on high-im-
pact weather events in a real scenario is assessed with the same 3DVAR DA system used in Part I (Gao 
et al., 2004, 2013). Although the encouraging results obtained in the idealized case study suggested that the 
simulated high-resolution AMVs have a positive impact on convective scale DA and storm forecasts, the 
influence of the AMV observations in the real data cases may be different depending on observation quality 
and distribution. As with the simulated data, the AMVs are confined to the region and vertical layer where 
the targeted tracers exist. There could be large areas without data, or there may be few data in the region 
where more information about mesoscale and convective flows is needed. The acceptable height range 
of AMVs and the corresponding data quality depend on the retrieving band (Daniels et al., 2012), which 
should be considered in the quality control strategy. Still, as demonstrated in Part I, the storm morphology 
and evolution are sensitive to the wind fields, the impact of AMV DA on severe storm forecasts can be very 
useful depending on different weather situations.

Since the forecast model and the 3DVAR system have been described in Part I of this study, only the main 
points are briefly summarized and the refinement in the quality control (QC) and assimilation settings for 
the GOES-16 derived AMVs, as well as the experimental design, are presented in Section 3. In Section 4, 
the results of the three real data cases are discussed. Finally, the summary and conclusions are offered in 
Section 5.

2.  Brief Description of GOES-16 AMV Data
AMVs in prepbufr format are post-processed for use in the operational models, however, they contain wind 
observations at a much coarser spatial and temporal resolution, which is not suitable for convective scale 
NWP. As indicated in Part I, this study uses the GOES-16 ABI Level 2 (L2) AMV product generated by 
NOAA NESDIS Center for Satellite Applications and Research (https://www.bou.class.noaa.gov/saa/prod-
ucts/search?sub_id=0&datatype_family=GRABIPRD&submit.x=15&submit.y=6) in NetCDF file format. 
The ABI aboard the GOES-16/17 satellites offers 11 more bands and has four times the spatial resolution 
and more than three times faster scanning ability than its predecessor aboard the GOES-N series (Daniels 
et al., 2012; Goodman et al., 2012; Schmit et al., 2005, 2017). The ABI AMV product is generated from a set 
of targeted tracers, including cloud edges or moisture gradients, viewed separately in each of six selected 
spectral channels: bands 2 (0.64 μm), 7 (3.9 μm), 8 (6.15 μm), 9 (7.0 μm), 10 (7.4 μm), and 14 (11.2 μm). Ta-
ble 1 lists the band number, central wavelength, tracer type, and temporal coverage for different ABI bands 
used to derive AMVs. Generally, AMVs are retrieved for cloudy and cloud-free, daylight and nightlight 
conditions depending on the band. For example, the visible AMVs (band 2) are only available during the 

https://www.bou.class.noaa.gov/saa/products/search%3Fsub%5Fid%3D0%26datatype%5Ffamily%3DGRABIPRD%26submit.x%3D15%26submit.y%3D6
https://www.bou.class.noaa.gov/saa/products/search%3Fsub%5Fid%3D0%26datatype%5Ffamily%3DGRABIPRD%26submit.x%3D15%26submit.y%3D6


Journal of Advances in Modeling Earth Systems

ZHAO ET AL.

10.1029/2021MS002486

3 of 25

daytime while the AMVs from shortwave infrared band 7 are produced during the nighttime. Nevertheless, 
both cloud and clear-sky water vapor-based AMV products are generated for band 8 (Table 1).

The ABI native spatial resolutions at nadir are 2 km for the infrared bands and 0.5 km for the 0.64-μm visible 
band. The spatial resolution of AMV data, which is coarser than the ABI native spatial resolution, is deter-
mined by both the spatial and temporal resolution of the ABI imagery and the scale of the intended feature 
being tracked (Daniels et al., 2012; Hamada, 1983; Shenk, 1991). For example, the horizontal resolution of 
the visible AMVs (derived from visible band 2) is 7.5 km, while the resolution of the wind data from the wa-
ter vapor bands (bands 8–10) and longwave infrared band (band 14) is 30 and 38 km, respectively (Daniels 
et al., 2012). To account for the error in AMV height assignment by the retrieving algorithm, the vertical res-
olution of AMV product is quite sparse, with only three layers: 1,000–700, 700–400, and 400–100 hPa (Rao 
et al., 2002), and the acceptable height range depends on the retrieving band (Table 1). Most studies show 
that the vertical distribution of the multispectral winds exhibits a typical bimodal pattern with maximums 
in the upper and lower troposphere, which is determined by the nature of the derivation algorithm (Goerss 
et al., 1998; Lean & Bormann, 2019; Nebuda et al., 2014; Xiao et al., 2002). Moreover, assigning a height to 
the targeted tracer is often considered to be the major uncertainty for AMVs (Velden & Bedka, 2009). Previ-
ous studies revealed that the AMVs height assignment error is the largest in the middle level (700–400 hPa) 
and smallest in the upper level (400–100 hPa; Lean & Bormann, 2019; Salonen et al., 2015).

In terms of the temporal resolution, the GOES-16 AMVs are available once an hour for the Full Disk (FD) 
of the Earth, every 15 min over the CONUS region, and every 5 min over a selectable 1,000 by 1,000 km 
mesoscale sector box (MESO). Following the conclusions from DA cycling frequency sensitivity experiment 
in Part I, the 15-min AMV data over the CONUS scan sector is chosen to be assimilated in this study. Owing 
to higher temporal, spatial and spectral resolution, as well as increased radiometric performance of the 
GOES-16 ABI, the retrieval algorithm is improved in the presence of better target selection, feature tracking, 
and target height assignment, resulting in higher quality AMV observations as a better representation of the 
low-level visible winds over land (Daniels et al., 2012; Lean & Bormann, 2019). Therefore, it is expected that 
assimilating the high-spatiotemporal-resolution AMVs will introduce mesoscale or convective scale airflow 
features into analysis and consequently improve the accuracy of severe storm forecasts over CONUS.

3.  Forecast Model, Data Quality Control, and Experimental Design
3.1.  Forecast Model

The forecast model used in this study is the fully compressible, non-hydrostatic Advanced Research version 
of the Weather Research and Forecasting (WRF-ARW) Model version 3.6.1 (Skamarock et al., 2008). The DA 
and forecast experiments are performed on one single domain with a horizontal spatial resolution of 1.5 km 
and horizontal dimensions of 600×600 grid points. The simulation domains from the Warn-on-Forecast 
System (WoFS) real-time Spring Forecast Experiment (SFE) runs are employed for all three cases in this 
study (Hu et al., 2020). There are 51 stretched vertical levels with a model top set at 20-hPa. For the physical 
parameterizations, we select the National Severe Storms Laboratory (NSSL) two-moment four-ice category 

ABI band Central wavelength (μm) Tracer type Temporal coverage
Acceptable height 

range (hPa)

2 0.64 Cloud Day 700–1,000

7 3.9 Cloud Night 700–1,000

8 6.15 Cloud/Clear-sky water vapor Day and night 100–400

9 7.0 Clear-sky water vapor Day and night 100–1,000

10 7.4 Clear-sky water vapor Day and night 450–700

14 11.2 Cloud Day and night 100–1,000

Note. From left to right column, ABI band number, central wavelength, tracer type, temporal coverage, and acceptable 
height range.

Table 1 
List of the ABI Bands Used to Derive AMVs
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bulk microphysics scheme (Mansell et al., 2010; Mansell & Ziegler, 2013; Ziegler, 1985), the Rapid Radiative 
Transfer Model (RRTM) longwave radiation scheme (Mlawer et al., 1997), the Dudhia shortwave radiation 
scheme (Dudhia, 1989), the Rapid Update Cycle (RUC) land surface scheme (Benjamin et al., 2004), and the 
Yonsei University (YSU) planetary boundary layer scheme (Hong et al., 2006).

3.2.  Data Quality Control and Assimilation Setting

Following Part I of this study, this work employs the NSSL Experimental WoF 3DVAR system (NSSL3D-
VAR; Gao et al., 2013, 2016; Gao & Stensrud, 2012, 2014). The NSSL3DVAR system is capable of effective-
ly assimilating radar reflectivity, radial velocity, satellite-derived cloud water path, and total precipitable 
water, Geostationary Lightning Mapper (GLM)-derived water vapor, sounding, and surface data (Fierro 
et al., 2019; Hu et al., 2019, 2020; Lai et al., 2019; Pan et al., 2018). In this study, the QC and assimilation 
modules for the GOES-16 AMVs are built into the NSSL3DVAR system, which will be described in more 
detail later in this section.

As mentioned above, this work assimilates ABI L2 AMV data from GOES-16 over the CONUS region. The 
raw observations of wind speed and azimuth from the AMV data sets are converted to zonal and meridional 
wind components (u and v) before entering the NSSL3DVAR system. To make full use of the mesoscale and 
convective scale airflow information, no data thinning is employed in this study. The wind observations are 
passed through a QC module to filter out bad data, before their insertion into the analysis procedure. Based 
on the channel-dependent pressure ranges for AMVs (Daniels et al., 2012) and the QC strategy adopted 
by previous studies (Kim et al., 2017; Lim et al., 2019; Mallick & Jones, 2020; Sawada et al., 2019; Velden 
et al., 2017), the seven-step observation checks depending on retrieval band are applied as the following:

1.	 �Remove all the wind data from the surface to 950 hPa and that above 100 hPa;
2.	 �For the winds derived from both visible (0.64 μm) and shortwave infrared (3.9 μm) bands, remove data 

above 750 hPa;
3.	 �For the upper-level water vapor winds (6.15 μm), reject data below 400 hPa;
4.	 �For band 9 (7.0 μm) winds, keep the data above 450 hPa only and with a minimum wind speed threshold 

of 8 m/s;
5.	 �For the longwave infrared band (11.2 μm), remove winds retrieved between 800 and 400 hPa;
6.	 �Reject all the data with a solar zenith angle larger than 68°; and
7.	 �A relaxed gross error check, which is designed to increase the retention of winds representing small-

er-scale flow, is performed to eliminate the observations outside of set tolerances from the interpolated 
model background field. Similar to Mallick and Jones (2020), the threshold value between the ratio of 
the innovation to the observation error is set to 5.

The above QC checks generally filter out 20%–30% of the available AMV observations in each analysis cycle. 
As in Part I of this study, the observation and background error for wind components are set to be 6 and 
3–6  m/s, respectively. This study adopts the minimization process in two loops, each with a prescribed 
horizontal and vertical correlation scale for the recursive filter used in the program (Gao et al., 2004; Purser 
et al., 2003). The correlation scales determine how far the observation information will spread in model 
space. Following the sensitivity experiment results in Part I, the horizontal correlation scale lengths are 
set to be 50 km in the first loop and 20 km in the second loop. And the corresponding vertical correlation 
lengths are 7 and 5 grid points, respectively.

3.3.  Experimental Design

The assimilation of GOES-16 ABI L2 AMV data is performed with three high-impact weather events that 
occurred over the Great Plains of the United States in spring 2018 and 2019. The DA and forecast cycle 
workflow, similar to that of WoFS real-time SFE runs (Hu et al., 2020; Jones et al., 2018), is utilized for each 
real case (Figure 1). The WRF model is initialized with the 3-km High Resolution Rapid Refresh (HRRR) 
forecast product at 1800 UTC, which is downscaled onto the 1.5-km grid. Then the AMV DA is cycled from 
1800 to 0300 UTC at 15-min intervals, with a 3-h free forecast launched every hour starting from 1900 UTC. 
The GOES-16 AMV data passing all QC checks between t−10  and t+5 min are accumulated and assimi-
lated at each analysis time t. A control run (denoted as NoDA) is also performed by integrating the model 
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forward without assimilating any observation and is compared to the AMV DA experiment (referred to as 
AMV).

To obtain both qualitative and quantitative evaluations of the AMV DA impact on the analyses and fore-
casts, the root-mean-square errors (RMSEs) and biases of wind components against the AMV data during 
the DA cycles are calculated first. Then, the model reflectivity and precipitation fields are verified against 
the composite radar reflectivity observations from the NSSL Multi-Radar Multi-Sensor (MRMS) product 
(Smith et al., 2016) and the Stage IV hourly rainfall estimates from the National Centers for Environmental 
Prediction (Baldwin & Mitchell, 1997), all of which are interpolated onto the 1.5-km model grids by using 
the bilinear interpolation method for the convenience of comparing observations to model simulations. 
Specifically, the verification parameters include the probability of detection (POD), the false alarm rate 
(FAR), success ratio (SR), and critical success index (CSI), and neighborhood-based scores like the equitable 
threat scores (ETS; Clark et al., 2010) and the fractions skill scores (FSS; Roberts & Lean, 2008).

4.  Results
The three high-impact weather events that occurred over the Great Plains of the United States on May 1, 
2018, May 28, 2019, and May 17, 2019 produced distinct storm modes under different weather situations. 
Numerous severe weather warnings were issued by the National Weather Service (NWS) for all three cases 
with subsequent storm reports including large hail, damaging winds, and tornadoes. In addition to the wind 
and equivalent potential temperature analyses, the short-term (0–3 h) forecasts of composite reflectivity and 
accumulated precipitation are discussed.

4.1.  Case 1: May 1, 2018

During the late afternoon and the evening of May 1, 2018, a southwest-northeast slow-moving cold front 
arcing across west-central Kansas into eastern Nebraska moved northeastward with a surface low over 
Kansas. Owing to the favorable environmental conditions, clustered storms developed near the low pres-
sure and along the front through the night and finally merged into a quasi-linear convective system, squall 
line (not shown). Between 2300 UTC May 1 and 0200 UTC May 2, a total of 13 tornadoes and several large 
hail and damaging wind events were reported in Kansas, Nebraska, and Oklahoma. Moreover, a couple of 
discrete storms initiated along a dryline extending southward from the front.

Figures 2a–2d display the geographical distribution of AMV data assimilated at 1800 and 2100 UTC May 
1 as well as 0000 and 0300 UTC May 2, 2018. It is seen that AMVs within the 400–100 hPa layer greatly 
outnumber the wind vectors below 400 hPa. This occurs because the majority of winds are retrieved from 
the upper-level water vapor band (6.15 μm) which represent upper-level cirrus cloud movements. A few 
AMVs from longwave infrared band (11.2 μm) are also derived within this layer. Diffluent flow within the 
400–100 hPa layer is apparent at the periphery of the squall line as it moved northeastward (Figures 2b–
2d). The upper-tropospheric divergence signature is a good measure of the updraft velocity and plays an 

Figure 1.  Illustration of the data assimilation and forecast cycle workflow. A 3-h forecast is launched every hour from 
1900 to 0300 UTC (namely, nine separate forecasts).
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important role in initiating convective storm development and maintaining storm intensity (Doswell, 2001). 
The low-level cyclonic wind shear behind the cold front is evident within the 1,000–700 hPa layer over the 
central Nebraska (Figure 2c).

The RMSEs and biases for the wind background and analyses against the GOES-16 AMV data during the 
DA cycles are shown in Figures 3a and 3b. The analyzed RMSEs are significantly smaller than those from 
the background throughout all the assimilation cycles (Figure 3a). This indicates the analysis is closer to 
the observations than the background, which confirms that the 3DVAR system generally ingests all the 
available observations reasonably well. And the biases for both wind components are improved (closer to 
zero) when AMV data are assimilated (Figure 3b). The RMSEs for u and v components are also computed 
and aggregated over nine 3-h free forecasts launched every hour from 1900 to 0300 UTC (Figure 3c). The 
forecast errors generally increase with integration time and the benefit of assimilating AMV is obvious in 
the first two hours into the forecasts.

Figure 2.  The geographical distribution of the GOES-16 atmospheric motion vector (AMV) observations which are assimilated at (a) 1800 UTC May 1, (b) 2100 
UTC May 1, (c) 0000 UTC May 2, and (d) 0300 UTC May 2, 2018. Red barbs represent AMVs within the 1,000–700 hPa layer, blue AMV barbs are within the 
700–400 hPa layer, and green AMV barbs are within the 400–100 hPa layer.



Journal of Advances in Modeling Earth Systems

ZHAO ET AL.

10.1029/2021MS002486

7 of 25

To assess how the AMV DA impacts the mesoscale airflow, the wind analyses and the associated divergence 
field are examined first (Figure 4). The reason for selecting 2300 UTC May 1, 2018 is that the squall line 
along the front has been developing into a mature stage until this time and the cumulative benefit from 
the prior analysis and forecast cycles is also relatively perceptible. The 850-hPa wind and equivalent po-
tential temperature analyses show that the front and dryline boundaries (indicated by the blue thick line 
in Figure 4a) in NoDA are basically aligned along a line, while the AMV experiment produces a turning 
point, which is the intersection between a more west-east oriented front and a dryline slightly farther to 
the western Kansas (Figure 4a vs. Figure 4b). The cyclonic rotation associated with the low over the north 
Kansas and central Nebraska is slightly enhanced by AMV. And the upper-level divergent flows above the 
cold pools are more pronounced in AMV than those in NoDA (Figure 4c vs. Figure 4d). It is evident that 
the pattern of the upper-level divergence field in AMV corresponds better to the area of >30 dBZ observed 
reflectivity and the corresponding magnitude is also improved by AMV (Figure 4e vs. Figure 4f).

The 1–3 h forecasts of composite reflectivity fields are illustrated in Figure 5 for the NoDA and AMV exper-
iments together with the MRMS observations. The quasi-linear convective system develops along the cold 

Figure 3.  Time series of (a) root-mean-square errors (RMSEs) and (b) biases for u (green), and v (blue) from 
background (solid) and analysis (dashed) during the assimilation cycles from 1800 to 0300 UTC. (c) Aggregate RMSEs 
for the nine 3-h free forecasts initialized with the background (solid) and analysis (dashed).
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Figure 4.  (a) and (b) 850-hPa and (c) and (d) 200-hPa wind analyses (m s−1, vectors) with 850-hPa equivalent potential 
temperature (k) indicated in colors for (left) NoDA and (right) atmospheric motion vector (AMV) experiments at 
2300 UTC May 1, 2018. (e) and (f) 200-hPa divergence analyses (10−5 s−1, shaded) for (left) NoDA and (right) AMV 
experiments. The contours in (e) and (f) represent the MRMS composite reflectivity at 30 and 50 dBZ.
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front as well as the discrete storm cells initiated near the dryline (Figures 5a–5c). NoDA produces two major 
separated areas of precipitation, more similar to two mesoscale convective systems (MCS), instead of a lin-
ear system over northeast Kansas and southwest Iowa (Figures 5d–5f). In contrast, the storms in the AMV 
experiment show a more linear convective mode, especially for the first hour forecast, and they are compa-
rable to the MRMS observations in terms of shape and location, although individual cells are not perfectly 
captured (Figures 5g–5i). This indicates that the assimilation of high-resolution AMV data can improve the 
storm development and movement near the frontal boundary by providing a better representation of storm 
wind information. However, the discrete cells over the south Kansas are either missed or predicted further 
southward in the AMV experiment. This occurs because an isolated cell or a smaller cluster of cells may be 
difficult for the AMV data to discern by nature. Another reason is that only wind data is being assimilated 

Figure 5.  The composite reflectivity (dBZ, shaded) for (a)–(c) MRMS observations interpolated onto the 1.5 km simulation domain, (d)–(f) NoDA, and (g)–(i) 
AMV experiments at (left, 1-h forecast) 0000 UTC May 2, (middle, 2-h forecast) 0100 UTC May 2, and (right, 3-h forecast) 0200 UTC May 2, 2018.
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here, while the timing and location of precipitation are often strongly controlled by the mass field. Fur-
thermore, the hourly accumulated precipitation (APCP) fields from NoDA and AMV are also compared in 
Figure 6. Along the quasi-linear convective system, the areal coverage of hourly APCP <20 mm is generally 
improved by the AMV DA. However, both NoDA and AMV appear to mostly overpredict the precipitation 
amount associated with some cells embedded within the linear system. Specifically, AMV overpredicts the 
1-h forecast precipitation over the north Kansas and it underpredicts the rainfall over western Iowa for 
the 2-h to 3-h forecasts (Figures 6g–6i vs. Figures 6a–6c). This is because a squall line or other mesoscale 
precipitation features are also difficult to reproduce in a model forecast, as model errors begin growing at 
small spatiotemporal scales in regions of precipitation, before communicating to the larger-scale flow and 
transitioning to a slower growth regime (Selz & Craig, 2015).

Figure 6.  The 1-h accumulated precipitation (APCP) fields (mm, shaded) for (a)–(c) from the Stage IV multi-sensor rainfall estimates, (d)–(f) NoDA, and (g)–
(i) AMV experiment at (left, 1-h forecast) 0000 UTC May 2, (middle, 2-h forecast) 0100 UTC May 2, and (right, 3-h forecast) 0200 UTC May 2, 2018.
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To quantify the performance of the composite reflectivity and APCP forecasts for the AMV DA, the categor-
ical performance diagrams and the neighborhood-based ETS are computed and aggregated over nine 3-h 
free forecasts launched every hour from 1900 to 0300 UTC. The performance diagram efficiently combines 
the information derived from key contingency table elements including POD, SR (1—FAR), and CSI (Roe-
bber, 2009). The closer the values of POD, SR, and CSI approach unity, the better forecast is achieved, with 
the perfect forecast located at the upper-right corner of the diagram. All the score metrics are calculated for 
a neighborhood radius of 12 km. The ETS for composite reflectivity is computed at 15-min intervals and 
that for APCP is at hourly intervals. As the composite reflectivity threshold increases from 30 to 50 dBZ, the 
forecast skill drops dramatically for the NoDA and AMV experiments, owing to decreased PODs along with 
increased FARs (Figures 7a–7c). Nevertheless, AMV consistently outperforms NoDA at all thresholds for 
each forecast lead time, with higher POD, SR, CSI, and ETS values. It is also worth noting that the positive 
impact of AMV DA becomes slightly larger when the reflectivity threshold increases from 30 to 50 dBZ. 
Similar trends and behavior are obtained in the performance diagrams and ETS figures for the hourly APCP 
against NCEP Stage IV multisensory rainfall product, highlighting the superior performance of AMV (Fig-
ure 8). In terms of the 1-h and 3-h score metrics in the performance diagrams, AMV substantially corrects 
the significant high bias (black dots closer to the upper-left corner of the diagram) and slightly increases the 
CSI values, while it generates lower PODs at the same time (Figures 8a–8c). One potential explanation is 
that the more linear convective mode of APCP forecast with AMV effectively reduces the false alarms with 
a narrower areal coverage of APCP >20 mm (Figure 6). Combined with the inability of the AMV data to 
resolve individual cells, lower POD values are obtained.

Figure 7.  Aggregate score metrics of composite reflectivity fields relative to MRMS observations for nine 3-h free forecasts for the NoDA (black) and AMV (red) 
experiments in Case 1. (a)–(c) show the performance diagrams at 1-h, 2-h, and 3-h forecast time, and (d)–(f) the equitable threat score (ETS) for (left) 30 dBZ, 
(middle) 40 dBZ, and (right) 50 dBZ thresholds, respectively. Results are shown for a neighborhood radius of 12-km.
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4.2.  Case 2: May 28, 2019

On the morning of May 28, 2019, a cluster of elevated thunderstorms initiated in central Kansas, from 
which the convective outflow reinforced the west-east front across northeast Kansas and northern 
Missouri. After the elevated convection began to interact with the baroclinic zone in northeast Kansas, it 
grew upscale by late afternoon into an MCS that spread northeast across northern Missouri and south-
ern Iowa. Meanwhile, a weak surface cyclone in north-central Kansas moved east-northeastward toward 
Missouri with a trailing cold front shifting slowly southeastward (Figures 11a–11c). To the south of the 
cyclone, a dryline sharpened across western Oklahoma and northwest Texas. These surface boundaries 
provided the primary foci for severe thunderstorm development. Between 2300 UTC May 28 and 0200 
UTC May 29, a total of 19 tornadoes and several large hail and damaging wind events were reported in 
Kansas, Missouri, and Oklahoma. An EF-2 tornado was confirmed in Clay County, Missouri around 0100 
UTC May 29 by the NWS damage survey team, with a maximum wind of 51.4 m/s and a maximum width 
of 365 m. Hail up to baseball size (2.75 in.) was reported in Trego County, Kansas and as large as tea cup 
size (3 inch) in Gove County, Kansas.

In the early 3DVAR cycles for this case, most AMV observations are derived from the visible band with-
in the 1,000–700 hPa layer, by the means of tracking immature, nonprecipitating cumulus (Bedka & Me-
cikalski, 2005). As the front moved east-northeastward, the associated low-level jet transported the moist 
and unstable airmass across the warm sector (Figures 9a–9e). During the later cycles (Figures 9f–9i), the 
AMVs generally represent the flow aloft within the 400–100 hPa layer and most winds are retrieved from the 
longwave infrared band (11.2 μm). The lack of AMVs in the mid-layer (700–400 hPa) for both cases (Cases 

Figure 8.  Same as in Figure 7, but for hourly APCP relative to Stage IV rainfall estimates calculated using the following thresholds: (a) and (d) 2.5 mm, (b) and 
(e) 5 mm, and (c) and (f) 10 mm.
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1 and 2) is due to the nature of the AMV retrieval algorithm. Since the retrieved AMVs show larger errors 
between 700 and 400 hPa (Sears & Velden, 2012; Velden et al., 2017), the longwave infrared winds within 
this layer are excluded by the QC procedures.

The analyzed potential temperature and wind fields are examined in Figure 10 as before. For this case, 
the surface analysis map from Weather Prediction Center (WPC) at 0000 UTC is also shown in Figure 10e. 
Comparison of Figures 10a and 10b against Figure 10e reveals that the AMV experiment generally captures 
the west-east front near the Missouri-Iowa state-line, while the front in NoDA extends too far northeastward 
into central Iowa. It is also noted that the front in the AMV DA experiment is located slightly north to that 
in the surface analysis map. A possible reason is that there is 1-h time difference between the two figures. 
Consistent with the 850-hPa temperature and wind analyses, the 200-hPa divergent flows are widely evident 

Figure 9.  Same as Figure 2, but for the AMV observations from 1800 UTC May 28 to 0200 UTC May 29, 2019 at 1-h intervals.
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Figure 10.  (a)–(b) 850-hPa and (c)–(d) 200-hPa wind analyses (m s−1, vectors) with 850-hPa equivalent potential 
temperature (k) indicated in colors for (up-middle left) NoDA and (up-middle right) AMV experiments at 
2300 UTC May 28, 2019. (e) The Weather Prediction Center (WPC) surface analysis map at 0000 UTC May 
29, 2019 (downloaded from https://www.wpc.ncep.noaa.gov/archives/web_pages/sfc/sfc_archive_maps.
php?arcdate=05/29/2019&selmap=2019052900&maptype=namussfc).
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above the cold pools associated with the MCS along the front and the isolated storms over eastern Kansas 
and northeastern Oklahoma (Figures 10c and 10d).

Owing to a better representation of the thermodynamic environment, AMV reasonably reproduces the 
MCS across northern Missouri and southern Iowa in terms of location and intensity, correcting the no-
table slower and northward propagation bias in the NoDA storm forecast (Figure 11). As is seen, both 
NoDA and AMV underpredict the widely scattered storms farther south along the dryline. This occurs 
because AMV DA does not help reduce the analysis errors for the variables not directly related to wind ob-
servations, such as humidity, which is also indicated by the idealized experiments in Part I of this study. 
Therefore, similar to NoDA, the AMV experiment still underestimates the sharp humidity gradient along 
the dryline (not shown). Consistent with the reflectivity forecasts, AMV improves the areal coverage of 

Figure 11.  Same as Figure 5, but for (left, analysis time) 2300 UTC May 28, (middle, 1-h forecast) 0000 UTC May 29, and (right, 2-h forecast) 0100 UTC May 29, 
2019.
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1–3 h APCP forecasts across the Missouri-Iowa border with somewhat larger or smaller rainfall amounts 
compared to observations, especially for general better rainfall position and cell alignment in the first 2 h 
(Figure 12).

From the aggregate forecast statistics for composite reflectivity, the improvements of ETS and CSI by 
AMV over NoDA persist through the 1–3 h forecasts, although the difference between them decreases 
for later forecasts (Figure 13). For the 30-dBZ and 40-dBZ thresholds, the higher forecast skill produced 
by AMV is largely due to an increased POD, with SR being approximately constant or slightly smaller 
(Figures 13a and 13b). At 50 dBZ, however, AMV produces higher POD and SR, which is more notable 

Figure 12.  Same as Figure 6, but for (left, 1-h forecast) 0000 UTC May 29, (middle, 2-h forecast) 0100 UTC May 29, and (right, 3-h forecast) 0200 UTC May 29, 
2019.
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during the first 2 h (Figure 13c). In terms of APCP, AMV tends to show overall larger values of SR and 
CSI but smaller PODs (Figures 14a–14c). For all APCP thresholds, AMV persistently produces larger 
ETS at 3-h forecasts although being small (e.g., <0.3 at 10 mm) and not significantly outperforming 
NoDA (Figures 14d–14f).

4.3.  Case 3: May 17, 2019

Through May 17, 2019 afternoon and evening, an intensifying High Plains surface low moved northeast-
ward out of Colorado across Nebraska, along with an eastward shifting upper-level trough. This contributed 
to a pronounced jet streak in the low- and mid-troposphere and favorable deep-layer shear for organized 
storms across western-central Nebraska, where multiple tornadoes and hail events were reported. A warm 
front extended eastward from the surface low, and transitioned into a cold front across the Ohio Valley/
mid-Atlantic. In addition, a dryline was present across western Kansas where several storms developed 
causing several tornadoes and very large hail owing to the favorable large-scale environment.

Figure 15 highlights how the AMV DA benefits the storm wind environment as well as the thermo-
dynamic analyses through the successive model adjustments to the background fields from the prior 
analysis cycles. NoDA underestimates the sharp temperature gradient associated with the front bound-
ary across northwestern Nebraska (indicated by the blue thick line in Figure  15b) while the AMV 
experiment successfully captures it with stronger low-level warm advection and cold surge on the 
west side of the front. Discrete storms developed near the surface low at the intersection of the front 
and dryline and eventually organized into a linear mode spreading northeast through the destabiliz-
ing warm sector (Figures 16a–16c). Comparison of Figures 16d–16f against Figures 16a–16c reveals 

Figure 13.  Same as Figure 7, but for case 2.
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that a faster and eastward movement bias is present over Nebraska in the NoDA storm forecasts. Ow-
ing to the more favorable storm environment (Figure 15b), the AMV experiment yields approximately 
comparable quasi-linear deep convection evolving across western Nebraska with slightly weaker bias 
(Figures 16g–16i). However, light spurious stratiform precipitation widely occurred across eastern Ne-
braska and Kansas in the 3-h forecast (Figure  16i). It is also seen that both AMV and NoDA fail to 
simulate the isolated cells initiated farther south along the dryline across western Kansas. This is be-
cause neither experiment reproduces such a sharp humidity gradient in this region, with the moisture 
gradient in AMV even slightly weaker (Figures 15c and 15d). The humidity gradient is crucial to the 
dryline, which is defined simply as a sharp boundary between moist air and dry air. As expected, the 
AMV experiment generally improves the areal coverage of 1–3 h APCP forecasts across west-central 
Nebraska, in spite of the bias in the rainfall amount (Figure 17). However, it misses the precipitation 
associated with the dryline in western Kansas.

Similar to the results discussed in previous cases, aggregate forecast statistics for nine separate 3-h fore-
casts are computed to provide a more comprehensive view of the AMV DA impact. For the 1–3 h reflectiv-
ity forecasts, AMV shows an overwhelming superiority over NoDA with much higher POD, CSI, SR, and 
ETS at all the thresholds (Figure 18). The weaker bias in reflectivity forecasts (Figure 16) results in overall 
small values of POD and ETS at 50 dBZ (Figures 18c and 18f). In terms of APCP, AMV exhibits notably 
less false alarms and larger CSI but smaller POD values at 1-h and 3-h forecasts (Figures 19a–19c). For all 
the three thresholds, the improvement of ETS by AMV over NoDA persists through the 1–3 h forecasts 
(Figures 19d–19f).

Figure 14.  Same as Figure 8, but for case 2.
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5.  Summary and Conclusions
This study investigates the impact of assimilating GOES-16 derived AMV observations using the 
NSSL 3DVAR system and WRF model on the short-term severe weather forecasts. The assessment 
of the AMV DA performance is carried out with three high-impact weather events that occurred in 
spring 2018 and 2019 over the Great Plains of the United States. First, the lower-level and upper-level 
wind analyses and the associated divergence field and potential temperature fields are examined for 
each case. Then the short-term forecasts of composite reflectivity and hourly APCP are quantitative-
ly verified against the MRMS and Stage IV products in the form of performance diagrams and ETS 
values.

The vertical distribution of the AMV observations available for assimilation in each case varies with the der-
ivation channels used to track cloud or clear-sky water vapor under different atmospheric conditions. The 

Figure 15.  700-hPa wind analyses (m s−1, vectors) with (a)–(b) equivalent potential temperature (K), and (c)–(d) water vapor mixing ratio (g kg−1) indicated in 
colors for (left) NoDA and (right) AMV experiments at 0100 UTC May 18, 2019.
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results from the three convective events exhibit a bimodal pattern with maximum AMV number in the up-
per (400–100 hPa) and lower (1,000–700 hPa) troposphere, which is similar to many earlier AMV DA stud-
ies. The lack of AMVs in the mid-layer (700–400 hPa) is determined by the nature of the retrieval algorithm.

The wind analyses for the large-scale environment and mesoscale convective systems are improved by the 
assimilation of GOES-16 AMVs. The upper-level divergence associated with the deep convection is also en-
hanced. Moreover, the AMV DA benefits the equivalent potential temperature fields through the successive 
adjustments during the model integration from the prior 3DVAR analysis cycles. These improvements lead to 
better simulation of the location and shape for the boundaries including fronts and cyclones, that influences 
the subsequent storm evolution and movement. For the quasi-linear or MCS along the boundaries, the AMV 

Figure 16.  Same as Figure 5, but for (left, analysis time) 0100 UTC May 18, (middle, 1-h forecast) 0200 UTC May 18, and (right, 2-h forecast) 0300 UTC May 18, 
2019.
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DA outperforms NoDA by yielding more reasonable short-term (0–3 h) forecasts of composite reflectivity and 
accumulated precipitation in terms of their shape, location, and magnitude. Overall, the aggregate forecast 
statistics indicate the positive impact of AMV DA on reflectivity and APCP forecasts, although the trends of 
POD and SR forecasts seem to be case-dependent. However, the AMV DA has difficulty in capturing the sharp 
moisture gradient associated with the dryline and generally underpredicts the associated scattered storms. 
This is because AMV DA has difficulty in reducing the analysis errors for the variables not directly related to 
wind observations, such as humidity. Given the spatial resolution of the current GOES-16 AMV product, the 
isolated cells or quite small clusters of cells may not be discernable by the AMV data.

Figure 17.  Same as Figure 6, but for (left, 1-h forecast) 0200 UTC May 18, (middle, 2-h forecast) 0300 UTC May 18, and (right, 3-h forecast) 0400 UTC May 18, 
2019.
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Although this study shows the usefulness of the high-resolution GOES-16 AMV data for improving con-
vective scale short-term forecasts, more issues related to the AMV DA should be addressed in future. Due 
to the complexity in estimating AMVs errors, further research will be devoted to refining the observation 
error estimation, including the consideration of error variations with height and/or satellite band. The 
application of the AMV DA to different phases in a life cycle of a convective storm will also be tested. For 
example, the AMVs before the cumulus stage could be separately assimilated to assess its impact on con-
vection initiation in the unstable atmosphere. This two-part study, which compares experiments with and 
without AMV DA, is intended to be representative of the maximum possible amount of new information 
that can be added when assimilating AMVs for the desired purpose. It is possible that assimilating radar 
radial velocity data combined with AMV DA can make up for their respective observation gaps. So as a 
next step, the impact of assimilating both radar and AMV data on the convective scale NWP, especially 
for the storm structure forecast and isolated cell initiation, will be investigated in the near future. The 
added value of AMV data will also be investigated within the NSSL3DVAR system in which all available 
observations are used currently.

Although the deficiency in the static background errors of 3DVAR is partially compensated by performing 
highly frequent DA cycling, it is likely that better AMV DA results can be achieved by using flow-dependent 
background error covariance. For example, ensemble-based prior errors may provide a more dynamically 
consistent link between upper-level winds and low-level moisture during the DA process. Therefore, as-
similation of the GOES-16 derived AMVs by using an En3DVar system (Gao et al., 2016), which uses the 
flow-dependent covariance derived from an ensemble of forecasts, will be investigated in the near future 
and presented in the third part of this study.

Figure 18.  Same as Figure 7, but case 3.
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Data Availability Statement
The source codes of WRF model version 3.6.1 could be downloaded after filling in the E-mail address 
(https://www2.mmm.ucar.edu/wrf/users/download/get_source.html). The GOES-16 ABI Level 2 (L2) 
AMV data were obtained online (https://www.bou.class.noaa.gov/saa/products/search?sub_id=0&da-
tatype_family=GRABIPRD&submit.x=15&submit.y=6). The Multi-Radar Multi-Sensor (MRMS) and the 
Stage IV rainfall products, and the aggregate forecast statistics for composite reflectivity and APCP are 
accessible online (https://doi.org/10.5281/zenodo.4495919).
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